Monitoring UT1 using VLBI and GPS estimates

D. Gambis, C. Bizouard and O. Becker

Earth Orientation Center of IERS Paris Observatory

International Earth Rotation and Reference Systems Service

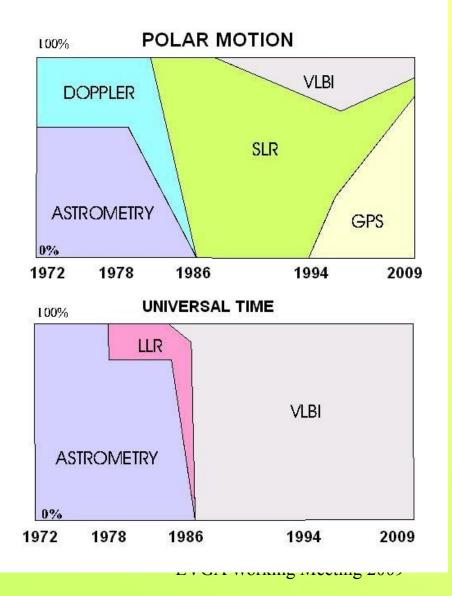
Outline

- 1 Combinations of astro-geodetic technique for Earth Rotation Status of the art
- 2 What is the contribution of VLBI to IERS EOP ?
 Statistics, analyses and comparisons of different ACs series R1, R4, INT1, INT2
- 3 Use of LOD GPS in UT1 estimation

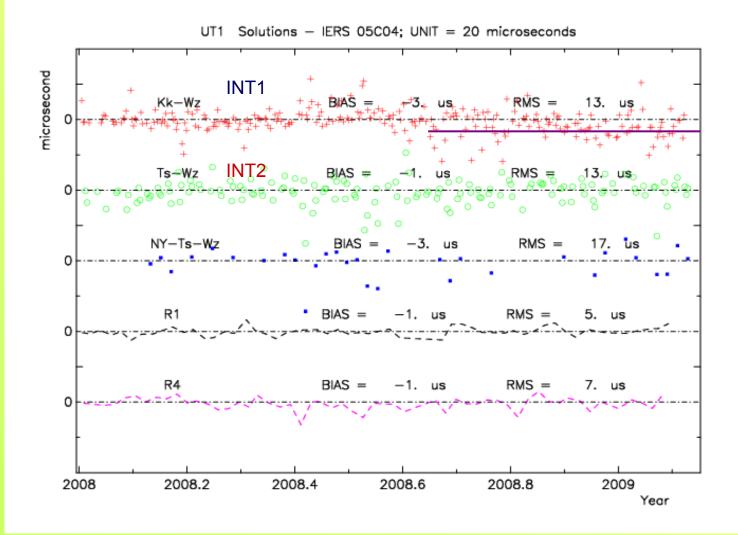
Techniques contributing to IERS, evolution with time

Technique	since	EOP	Time Res.	Present	accuracy
ASTROMETRY	1899	Pole UT1 Nutation	5 days "	Pole: UT1: Nutation:	20 mas 1 ms 40 mas
DOPPLER	1972	Pole	2 days	Pole:	4 mas
LLR	1969	UT0	1 day	UT0:	0.1 ms
SLR	1976	Pole LOD	3 days "	Pole: LOD:	<mark>200μas</mark> 200 μs
VLBI	1981	Pole Nutation UT1	3 days " sub-daily - 1 day	Pole: Nutation: UT1:	100 μa <mark>s</mark> 60 μas 5 μs
GPS	1993	Pole LOD	sub-daily "	Pole: LOD:	30 μa <mark>s</mark> 8 μs
DORIS	1995	Pole	3 days	Pole:	1 mas

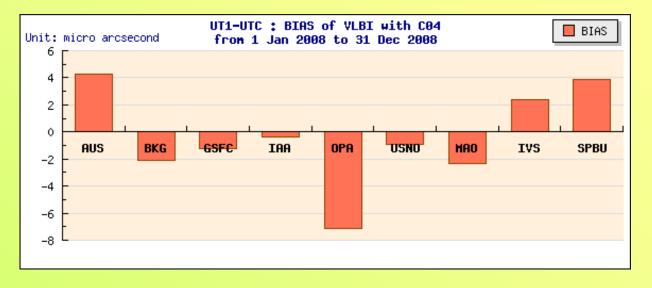
CONTRIBUTION OF THE TECHNIQUES TO THE IERS COMBINED SOLUTIONS

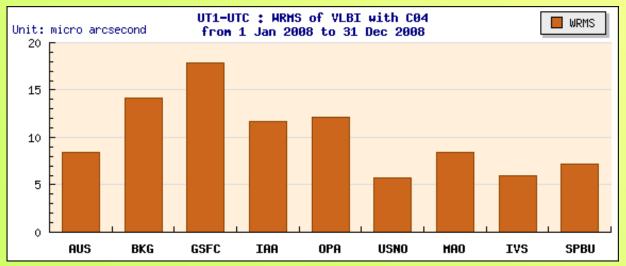


Comparisons INT1, INT2, R1 and R4 to C04

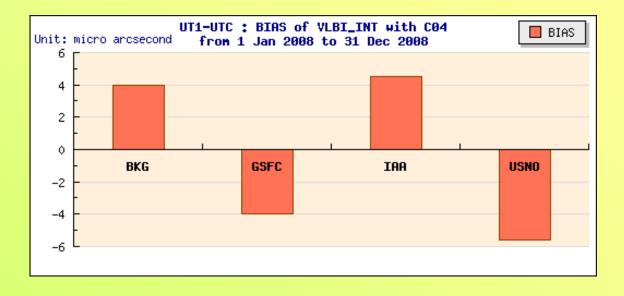


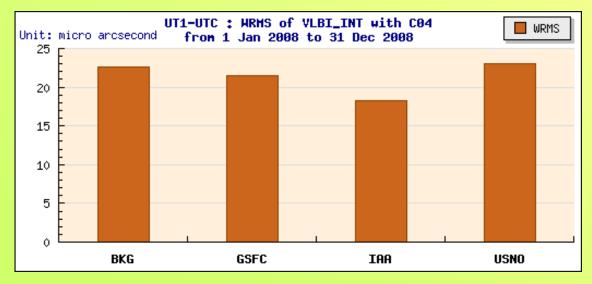
VLBI standard, UT1





VLBI intensive, UT1





EVGA Working Meeting 2009

USE of LOD(GPS) for UT1

Data

- UT1 standard VLBI sessions
 - Series from VLBI ACs (AUSLIG, GSFC, IAA, USNO, OPA,IAA, SPBU), GSFC R1 and R4
- UT1, intensive sessions
- Daily LOD from IGS (igs00p03),
 - 12h epochs,

Problem of systematic biaises due to GPS orbit mis-modeling

- Integration of LOD can be used
 - Densification

Correct when VLBI intensive are erroneous (50-100 μ s possible) Fill gaps when UT1 intensive are missing (sometimes 4-5 days) Quasi-real time estimates (last VLBI intensive epoch to now)

Method of Combined smoothing

- UT1 is observed by VLBI with a high long-term accuracy stability, with not high resolution (3/4 days), 5-8 μs
- UT1 intensive 15-20 μs
- LOD is observed by satellite methods with a short-term accuracy (10 μs) and high resolution (1 day)
- LOD first derivative of UT1 LOD=-d (UT1-TAI)/dt

Method of Combined smoothing

- Two relatively smooth curves
 - a) One fitting well to VLBI UT1 estimates
 - b) Second one fitting well to GPS LOD estimates
 - Both curves tied by constraints: latter is the first derivative of the former
- Combined smoothing is a generalization of Vondrak's smoothing (Vondrak and Gambis, 1999; Vondrak and Cepek, 2000)

Compromise between 3 conditions:

we define the values:

1.
$$S = \frac{1}{x_n - x_1} \int_{x_1}^{x_n} [\Phi^{\prime\prime\prime}(x)]^2 dt$$

'smoothness' of the first curve, where ϕ is estimated from Lagrange polynomial fitted to four consecutive points on the smoothed curve;

Smoothed

- smoothed

2.
$$F = \frac{1}{n-3} \sum_{1}^{n} p_i (y_i^{j} - y_i^{j})^2$$

'fidelity' of the first curve to the observed values;

3.
$$\overline{F} = \frac{1}{n-3} \sum_{j=1}^{n} \overline{p}_{j} (\overline{y}_{j}^{\prime} - \overline{y}_{j})^{2}$$

'fidelity' of the second curve to the observed first derivatives;

and we express the values \overline{y}_{j} in terms of y_{i} (from the first derivatives of the same Lagrange polynomial defining smoothness *S* above)

 \Rightarrow constraints assuring that the second curve is the time derivative of the first one, of the general form

$$\overline{y}_j = \sum_{i=1}^n a_i y_i$$

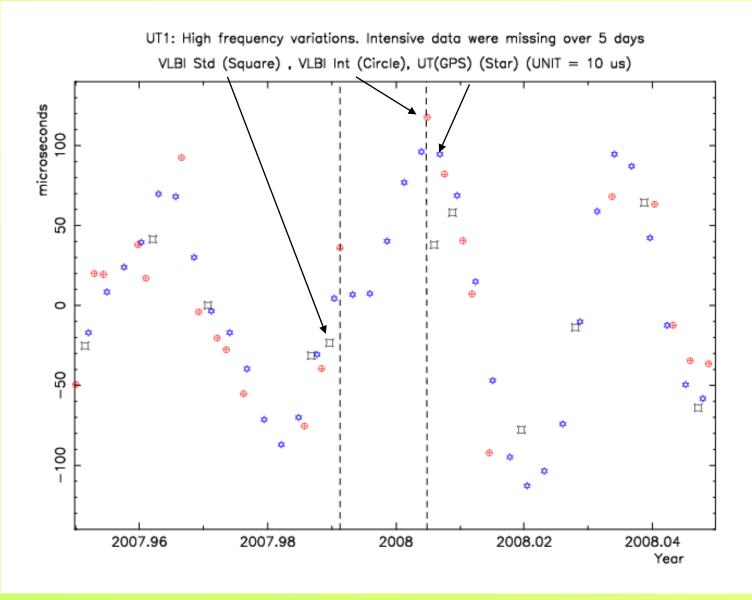
A

We are looking for the 'smoothed' function values y_i and the first derivatives $\overline{y_j}$ as a (weighted) compromise among three conditions:

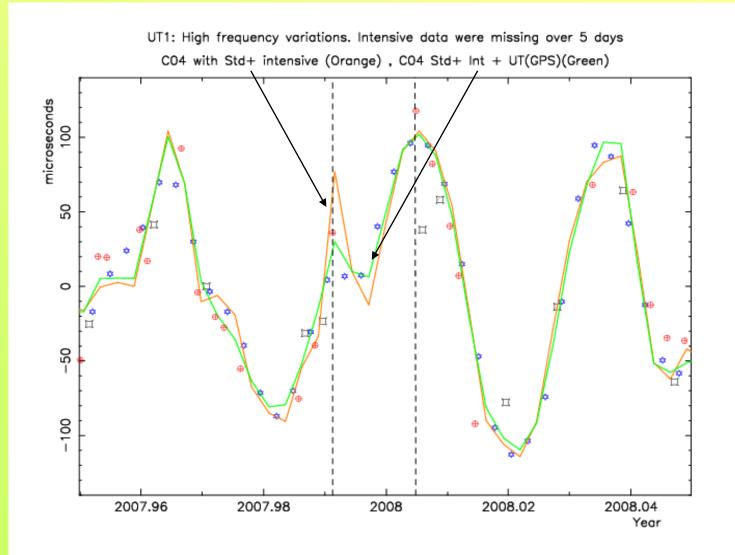
- a) the curve should be smooth (minimizing S);
- b) the values y_i should be close to the observed values of the function (minimizing F);
- c) the values $\overline{y_j}$ should be close to the observed values of the first derivative (minimizing \overline{F});
- d) the values y_i , $\overline{y_i}$ are tied by the constraints above.
- ⇒ Adjustment by minimizing the expression

$$Q = S + \varepsilon F + \overline{\varepsilon} \overline{F} = \min.$$
$$\Rightarrow \frac{\partial Q}{\partial y_i} = 0$$

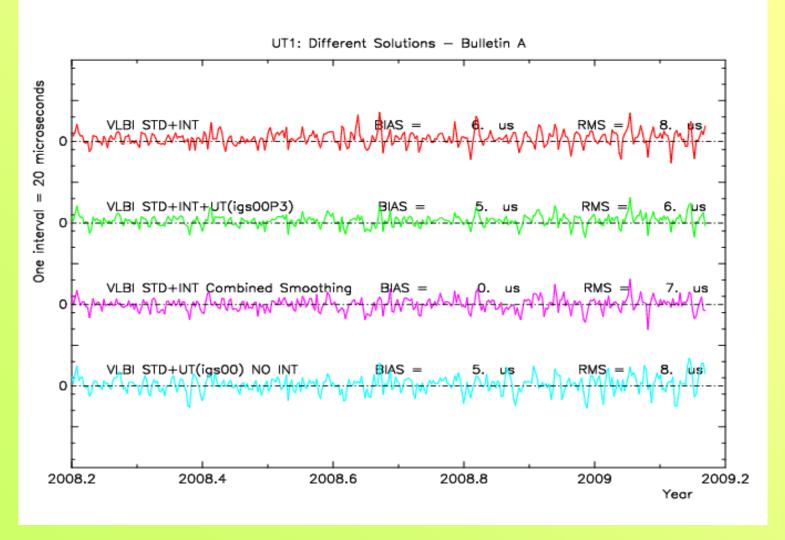
leading to the system of *n* linear equations (whose matrix is symmetric, with only 7 non-zero diagonals) for the unknowns y_i ; the values $\overline{y_i}$ can be then easily calculated from the constraints.



EVGA Working Meeting 2009



Comparison of various UT1 series to BULLETIN A



EVGA Working Meeting 2009

CONCLUSIONS

- Current accuracy in the range of 5 μ s for Standard, 15-20 μ s for Intensive
- However, in case of erroneous data or gaps, UT(GPS) can be valuable to densify and homogenize UT1 estimates
- Combined smoothing using LOD(GPS) allows to improve the combination of UT1 and LOD
- Consistency of UT1 and LOD
- UT1: Gain of only 3 μs (45 μas) when using intensive!!